
 The Rust Programming Language

by Steve Klabnik and Carol Nichols, with contributions from the Rust Community

This version of the text assumes you’re using Rust 1.76.0 (released 2024-02-08)
or later. See the “Installation” section of Chapter 1
to install or update Rust.

The HTML format is available online at
https://doc.rust-lang.org/stable/book/
and offline with installations of Rust made with rustup; run rustup doc --book to open.

Several community translations are also available.

This text is available in paperback and ebook format from No Starch
Press.

🚨 Want a more interactive learning experience? Try out a different version
of the Rust Book, featuring: quizzes, highlighting, visualizations, and
more: https://rust-book.cs.brown.edu

 Foreword

It wasn’t always so clear, but the Rust programming language is fundamentally
about empowerment: no matter what kind of code you are writing now, Rust
empowers you to reach farther, to program with confidence in a wider variety of
domains than you did before.

Take, for example, “systems-level” work that deals with low-level details of
memory management, data representation, and concurrency. Traditionally, this
realm of programming is seen as arcane, accessible only to a select few who
have devoted the necessary years learning to avoid its infamous pitfalls. And
even those who practice it do so with caution, lest their code be open to
exploits, crashes, or corruption.

Rust breaks down these barriers by eliminating the old pitfalls and providing a
friendly, polished set of tools to help you along the way. Programmers who need
to “dip down” into lower-level control can do so with Rust, without taking on
the customary risk of crashes or security holes, and without having to learn
the fine points of a fickle toolchain. Better yet, the language is designed to
guide you naturally towards reliable code that is efficient in terms of speed
and memory usage.

Programmers who are already working with low-level code can use Rust to raise
their ambitions. For example, introducing parallelism in Rust is a relatively
low-risk operation: the compiler will catch the classical mistakes for you. And
you can tackle more aggressive optimizations in your code with the confidence
that you won’t accidentally introduce crashes or vulnerabilities.

But Rust isn’t limited to low-level systems programming. It’s expressive and
ergonomic enough to make CLI apps, web servers, and many other kinds of code
quite pleasant to write — you’ll find simple examples of both later in the
book. Working with Rust allows you to build skills that transfer from one
domain to another; you can learn Rust by writing a web app, then apply those
same skills to target your Raspberry Pi.

This book fully embraces the potential of Rust to empower its users. It’s a
friendly and approachable text intended to help you level up not just your
knowledge of Rust, but also your reach and confidence as a programmer in
general. So dive in, get ready to learn—and welcome to the Rust community!

— Nicholas Matsakis and Aaron Turon

 Introduction

Note: This edition of the book is the same as The Rust Programming
Language available in print and ebook format from No Starch
Press.

Welcome to The Rust Programming Language, an introductory book about Rust.
The Rust programming language helps you write faster, more reliable software.
High-level ergonomics and low-level control are often at odds in programming
language design; Rust challenges that conflict. Through balancing powerful
technical capacity and a great developer experience, Rust gives you the option
to control low-level details (such as memory usage) without all the hassle
traditionally associated with such control.

Who Rust Is For

Rust is ideal for many people for a variety of reasons. Let’s look at a few of
the most important groups.

Teams of Developers

Rust is proving to be a productive tool for collaborating among large teams of
developers with varying levels of systems programming knowledge. Low-level code
is prone to various subtle bugs, which in most other languages can be caught
only through extensive testing and careful code review by experienced
developers. In Rust, the compiler plays a gatekeeper role by refusing to
compile code with these elusive bugs, including concurrency bugs. By working
alongside the compiler, the team can spend their time focusing on the program’s
logic rather than chasing down bugs.

Rust also brings contemporary developer tools to the systems programming world:

	Cargo, the included dependency manager and build tool, makes adding,
compiling, and managing dependencies painless and consistent across the Rust
ecosystem.

	The Rustfmt formatting tool ensures a consistent coding style across
developers.

	The rust-analyzer powers Integrated Development Environment (IDE)
integration for code completion and inline error messages.

By using these and other tools in the Rust ecosystem, developers can be
productive while writing systems-level code.

Students

Rust is for students and those who are interested in learning about systems
concepts. Using Rust, many people have learned about topics like operating
systems development. The community is very welcoming and happy to answer
student questions. Through efforts such as this book, the Rust teams want to
make systems concepts more accessible to more people, especially those new to
programming.

Companies

Hundreds of companies, large and small, use Rust in production for a variety of
tasks, including command line tools, web services, DevOps tooling, embedded
devices, audio and video analysis and transcoding, cryptocurrencies,
bioinformatics, search engines, Internet of Things applications, machine
learning, and even major parts of the Firefox web browser.

Open Source Developers

Rust is for people who want to build the Rust programming language, community,
developer tools, and libraries. We’d love to have you contribute to the Rust
language.

People Who Value Speed and Stability

Rust is for people who crave speed and stability in a language. By speed, we
mean both how quickly Rust code can run and the speed at which Rust lets you
write programs. The Rust compiler’s checks ensure stability through feature
additions and refactoring. This is in contrast to the brittle legacy code in
languages without these checks, which developers are often afraid to modify. By
striving for zero-cost abstractions, higher-level features that compile to
lower-level code as fast as code written manually, Rust endeavors to make safe
code be fast code as well.

The Rust language hopes to support many other users as well; those mentioned
here are merely some of the biggest stakeholders. Overall, Rust’s greatest
ambition is to eliminate the trade-offs that programmers have accepted for
decades by providing safety and productivity, speed and ergonomics. Give
Rust a try and see if its choices work for you.

Who This Book Is For

This book assumes that you’ve written code in another programming language but
doesn’t make any assumptions about which one. We’ve tried to make the material
broadly accessible to those from a wide variety of programming backgrounds. We
don’t spend a lot of time talking about what programming is or how to think
about it. If you’re entirely new to programming, you would be better served by
reading a book that specifically provides an introduction to programming.

How to Use This Book

In general, this book assumes that you’re reading it in sequence from front to
back. Later chapters build on concepts in earlier chapters, and earlier
chapters might not delve into details on a particular topic but will revisit
the topic in a later chapter.

You’ll find two kinds of chapters in this book: concept chapters and project
chapters. In concept chapters, you’ll learn about an aspect of Rust. In project
chapters, we’ll build small programs together, applying what you’ve learned so
far. Chapters 2, 12, and 20 are project chapters; the rest are concept chapters.

Chapter 1 explains how to install Rust, how to write a “Hello, world!” program,
and how to use Cargo, Rust’s package manager and build tool. Chapter 2 is a
hands-on introduction to writing a program in Rust, having you build up a
number guessing game. Here we cover concepts at a high level, and later
chapters will provide additional detail. If you want to get your hands dirty
right away, Chapter 2 is the place for that. Chapter 3 covers Rust features
that are similar to those of other programming languages, and in Chapter 4
you’ll learn about Rust’s ownership system. If you’re a particularly meticulous
learner who prefers to learn every detail before moving on to the next, you
might want to skip Chapter 2 and go straight to Chapter 3, returning to Chapter
2 when you’d like to work on a project applying the details you’ve learned.

Chapter 5 discusses structs and methods, and Chapter 6 covers enums, match
expressions, and the if let control flow construct. You’ll use structs and
enums to make custom types in Rust.

In Chapter 7, you’ll learn about Rust’s module system and about privacy rules
for organizing your code and its public Application Programming Interface
(API). Chapter 8 discusses some common collection data structures that the
standard library provides, such as vectors, strings, and hash maps. Chapter 9
explores Rust’s error-handling philosophy and techniques.

Chapter 10 digs into generics, traits, and lifetimes, which give you the power
to define code that applies to multiple types. Chapter 11 is all about testing,
which even with Rust’s safety guarantees is necessary to ensure your program’s
logic is correct. In Chapter 12, we’ll build our own implementation of a subset
of functionality from the grep command line tool that searches for text
within files. For this, we’ll use many of the concepts we discussed in the
previous chapters.

Chapter 13 explores closures and iterators: features of Rust that come from
functional programming languages. In Chapter 14, we’ll examine Cargo in more
depth and talk about best practices for sharing your libraries with others.
Chapter 15 discusses smart pointers that the standard library provides and the
traits that enable their functionality.

In Chapter 16, we’ll walk through different models of concurrent programming
and talk about how Rust helps you to program in multiple threads fearlessly.
Chapter 17 looks at how Rust idioms compare to object-oriented programming
principles you might be familiar with.

Chapter 18 is a reference on patterns and pattern matching, which are powerful
ways of expressing ideas throughout Rust programs. Chapter 19 contains a
smorgasbord of advanced topics of interest, including unsafe Rust, macros, and
more about lifetimes, traits, types, functions, and closures.

In Chapter 20, we’ll complete a project in which we’ll implement a low-level
multithreaded web server!

Finally, some appendices contain useful information about the language in a
more reference-like format. Appendix A covers Rust’s keywords, Appendix B
covers Rust’s operators and symbols, Appendix C covers derivable traits
provided by the standard library, Appendix D covers some useful development
tools, and Appendix E explains Rust editions. In Appendix F, you can find
translations of the book, and in Appendix G we’ll cover how Rust is made and
what nightly Rust is.

There is no wrong way to read this book: if you want to skip ahead, go for it!
You might have to jump back to earlier chapters if you experience any
confusion. But do whatever works for you.

An important part of the process of learning Rust is learning how to read the
error messages the compiler displays: these will guide you toward working code.
As such, we’ll provide many examples that don’t compile along with the error
message the compiler will show you in each situation. Know that if you enter
and run a random example, it may not compile! Make sure you read the
surrounding text to see whether the example you’re trying to run is meant to
error. Ferris will also help you distinguish code that isn’t meant to work:

	Ferris	Meaning

	[image: Ferris with a question mark]	This code does not compile!

	[image: Ferris throwing up their hands]	This code panics!

	[image: Ferris with one claw up, shrugging]	This code does not produce the desired behavior.

In most situations, we’ll lead you to the correct version of any code that
doesn’t compile.

Source Code

The source files from which this book is generated can be found on
GitHub.

 Getting Started

Let’s start your Rust journey! There’s a lot to learn, but every journey starts
somewhere. In this chapter, we’ll discuss:

	Installing Rust on Linux, macOS, and Windows

	Writing a program that prints Hello, world!

	Using cargo, Rust’s package manager and build system

 Installation

The first step is to install Rust. We’ll download Rust through rustup, a
command line tool for managing Rust versions and associated tools. You’ll need
an internet connection for the download.

Note: If you prefer not to use rustup for some reason, please see the
Other Rust Installation Methods page for more options.

The following steps install the latest stable version of the Rust compiler.
Rust’s stability guarantees ensure that all the examples in the book that
compile will continue to compile with newer Rust versions. The output might
differ slightly between versions because Rust often improves error messages and
warnings. In other words, any newer, stable version of Rust you install using
these steps should work as expected with the content of this book.

Command Line Notation

In this chapter and throughout the book, we’ll show some commands used in the
terminal. Lines that you should enter in a terminal all start with $. You
don’t need to type the $ character; it’s the command line prompt shown to
indicate the start of each command. Lines that don’t start with $ typically
show the output of the previous command. Additionally, PowerShell-specific
examples will use > rather than $.

Installing rustup on Linux or macOS

If you’re using Linux or macOS, open a terminal and enter the following command:

$ curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf | sh

The command downloads a script and starts the installation of the rustup
tool, which installs the latest stable version of Rust. You might be prompted
for your password. If the install is successful, the following line will appear:

Rust is installed now. Great!

You will also need a linker, which is a program that Rust uses to join its
compiled outputs into one file. It is likely you already have one. If you get
linker errors, you should install a C compiler, which will typically include a
linker. A C compiler is also useful because some common Rust packages depend on
C code and will need a C compiler.

On macOS, you can get a C compiler by running:

$ xcode-select --install

Linux users should generally install GCC or Clang, according to their
distribution’s documentation. For example, if you use Ubuntu, you can install
the build-essential package.

Installing rustup on Windows

On Windows, go to https://www.rust-lang.org/tools/install and follow
the instructions for installing Rust. At some point in the installation, you’ll
be prompted to install Visual Studio. This provides a linker and the native
libraries needed to compile programs. If you need more help with this step, see
https://rust-lang.github.io/rustup/installation/windows-msvc.html

The rest of this book uses commands that work in both cmd.exe and PowerShell.
If there are specific differences, we’ll explain which to use.

Troubleshooting

To check whether you have Rust installed correctly, open a shell and enter this
line:

$ rustc --version

You should see the version number, commit hash, and commit date for the latest
stable version that has been released, in the following format:

rustc x.y.z (abcabcabc yyyy-mm-dd)

If you see this information, you have installed Rust successfully! If you don’t
see this information, check that Rust is in your %PATH% system variable as
follows.

In Windows CMD, use:

> echo %PATH%

In PowerShell, use:

> echo $env:Path

In Linux and macOS, use:

$ echo $PATH

If that’s all correct and Rust still isn’t working, there are a number of
places you can get help. Find out how to get in touch with other Rustaceans (a
silly nickname we call ourselves) on the community page.

Updating and Uninstalling

Once Rust is installed via rustup, updating to a newly released version is
easy. From your shell, run the following update script:

$ rustup update

To uninstall Rust and rustup, run the following uninstall script from your
shell:

$ rustup self uninstall

Local Documentation

The installation of Rust also includes a local copy of the documentation so
that you can read it offline. Run rustup doc to open the local documentation
in your browser.

Any time a type or function is provided by the standard library and you’re not
sure what it does or how to use it, use the application programming interface
(API) documentation to find out!

 Hello, World!

Now that you’ve installed Rust, it’s time to write your first Rust program.
It’s traditional when learning a new language to write a little program that
prints the text Hello, world! to the screen, so we’ll do the same here!

Note: This book assumes basic familiarity with the command line. Rust makes
no specific demands about your editing or tooling or where your code lives, so
if you prefer to use an integrated development environment (IDE) instead of
the command line, feel free to use your favorite IDE. Many IDEs now have some
degree of Rust support; check the IDE’s documentation for details. The Rust
team has been focusing on enabling great IDE support via rust-analyzer. See
Appendix D for more details.

Creating a Project Directory

You’ll start by making a directory to store your Rust code. It doesn’t matter
to Rust where your code lives, but for the exercises and projects in this book,
we suggest making a projects directory in your home directory and keeping all
your projects there.

Open a terminal and enter the following commands to make a projects directory
and a directory for the “Hello, world!” project within the projects directory.

For Linux, macOS, and PowerShell on Windows, enter this:

$ mkdir ~/projects
$ cd ~/projects
$ mkdir hello_world
$ cd hello_world

For Windows CMD, enter this:

> mkdir "%USERPROFILE%\projects"
> cd /d "%USERPROFILE%\projects"
> mkdir hello_world
> cd hello_world

Writing and Running a Rust Program

Next, make a new source file and call it main.rs. Rust files always end with
the .rs extension. If you’re using more than one word in your filename, the
convention is to use an underscore to separate them. For example, use
hello_world.rs rather than helloworld.rs.

Now open the main.rs file you just created and enter the code in Listing 1-1.

fn main() {
 println!("Hello, world!");
}

Save the file and go back to your terminal window in the
~/projects/hello_world directory. On Linux or macOS, enter the following
commands to compile and run the file:

$ rustc main.rs
$./main
Hello, world!

On Windows, enter the command .\main.exe instead of ./main:

> rustc main.rs
> .\main.exe
Hello, world!

Regardless of your operating system, the string Hello, world! should print to
the terminal. If you don’t see this output, refer back to the
“Troubleshooting” part of the Installation
section for ways to get help.

If Hello, world! did print, congratulations! You’ve officially written a Rust
program. That makes you a Rust programmer—welcome!

Anatomy of a Rust Program

Let’s review this “Hello, world!” program in detail. Here’s the first piece of
the puzzle:

fn main() {

}

These lines define a function named main. The main function is special: it
is always the first code that runs in every executable Rust program. Here, the
first line declares a function named main that has no parameters and returns
nothing. If there were parameters, they would go inside the parentheses ().

The function body is wrapped in {}. Rust requires curly brackets around all
function bodies. It’s good style to place the opening curly bracket on the same
line as the function declaration, adding one space in between.

Note: If you want to stick to a standard style across Rust projects, you can
use an automatic formatter tool called rustfmt to format your code in a
particular style (more on rustfmt in
Appendix D). The Rust team has included this tool
with the standard Rust distribution, as rustc is, so it should already be
installed on your computer!

The body of the main function holds the following code:

 println!("Hello, world!");

This line does all the work in this little program: it prints text to the
screen. There are four important details to notice here.

First, Rust style is to indent with four spaces, not a tab.

Second, println! calls a Rust macro. If it had called a function instead, it
would be entered as println (without the !). We’ll discuss Rust macros in
more detail in Chapter 19. For now, you just need to know that using a !
means that you’re calling a macro instead of a normal function and that macros
don’t always follow the same rules as functions.

Third, you see the "Hello, world!" string. We pass this string as an argument
to println!, and the string is printed to the screen.

Fourth, we end the line with a semicolon (;), which indicates that this
expression is over and the next one is ready to begin. Most lines of Rust code
end with a semicolon.

Compiling and Running Are Separate Steps

You’ve just run a newly created program, so let’s examine each step in the
process.

Before running a Rust program, you must compile it using the Rust compiler by
entering the rustc command and passing it the name of your source file, like
this:

$ rustc main.rs

If you have a C or C++ background, you’ll notice that this is similar to gcc
or clang. After compiling successfully, Rust outputs a binary executable.

On Linux, macOS, and PowerShell on Windows, you can see the executable by
entering the ls command in your shell:

$ ls
main main.rs

On Linux and macOS, you’ll see two files. With PowerShell on Windows, you’ll
see the same three files that you would see using CMD. With CMD on Windows, you
would enter the following:

> dir /B %= the /B option says to only show the file names =%
main.exe
main.pdb
main.rs

This shows the source code file with the .rs extension, the executable file
(main.exe on Windows, but main on all other platforms), and, when using
Windows, a file containing debugging information with the .pdb extension.
From here, you run the main or main.exe file, like this:

$./main # or .\main.exe on Windows

If your main.rs is your “Hello, world!” program, this line prints Hello, world! to your terminal.

If you’re more familiar with a dynamic language, such as Ruby, Python, or
JavaScript, you might not be used to compiling and running a program as
separate steps. Rust is an ahead-of-time compiled language, meaning you can
compile a program and give the executable to someone else, and they can run it
even without having Rust installed. If you give someone a .rb, .py, or
.js file, they need to have a Ruby, Python, or JavaScript implementation
installed (respectively). But in those languages, you only need one command to
compile and run your program. Everything is a trade-off in language design.

Just compiling with rustc is fine for simple programs, but as your project
grows, you’ll want to manage all the options and make it easy to share your
code. Next, we’ll introduce you to the Cargo tool, which will help you write
real-world Rust programs.

 Hello, Cargo!

Cargo is Rust’s build system and package manager. Most Rustaceans use this tool
to manage their Rust projects because Cargo handles a lot of tasks for you,
such as building your code, downloading the libraries your code depends on, and
building those libraries. (We call the libraries that your code needs
dependencies.)

The simplest Rust programs, like the one we’ve written so far, don’t have any
dependencies. If we had built the “Hello, world!” project with Cargo, it would
only use the part of Cargo that handles building your code. As you write more
complex Rust programs, you’ll add dependencies, and if you start a project
using Cargo, adding dependencies will be much easier to do.

Because the vast majority of Rust projects use Cargo, the rest of this book
assumes that you’re using Cargo too. Cargo comes installed with Rust if you
used the official installers discussed in the
“Installation” section. If you installed Rust
through some other means, check whether Cargo is installed by entering the
following in your terminal:

$ cargo --version

If you see a version number, you have it! If you see an error, such as command not found, look at the documentation for your method of installation to
determine how to install Cargo separately.

Creating a Project with Cargo

Let’s create a new project using Cargo and look at how it differs from our
original “Hello, world!” project. Navigate back to your projects directory
(or wherever you decided to store your code). Then, on any operating system,
run the following:

$ cargo new hello_cargo
$ cd hello_cargo

The first command creates a new directory and project called hello_cargo.
We’ve named our project hello_cargo, and Cargo creates its files in a
directory of the same name.

Go into the hello_cargo directory and list the files. You’ll see that Cargo
has generated two files and one directory for us: a Cargo.toml file and a
src directory with a main.rs file inside.

It has also initialized a new Git repository along with a .gitignore file.
Git files won’t be generated if you run cargo new within an existing Git
repository; you can override this behavior by using cargo new --vcs=git.

Note: Git is a common version control system. You can change cargo new to
use a different version control system or no version control system by using
the --vcs flag. Run cargo new --help to see the available options.

Open Cargo.toml in your text editor of choice. It should look similar to the
code in Listing 1-2.

[package]
name = "hello_cargo"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

This file is in the TOML (Tom’s Obvious, Minimal
Language) format, which is Cargo’s configuration format.

The first line, [package], is a section heading that indicates that the
following statements are configuring a package. As we add more information to
this file, we’ll add other sections.

The next three lines set the configuration information Cargo needs to compile
your program: the name, the version, and the edition of Rust to use. We’ll talk
about the edition key in Appendix E.

The last line, [dependencies], is the start of a section for you to list any
of your project’s dependencies. In Rust, packages of code are referred to as
crates. We won’t need any other crates for this project, but we will in the
first project in Chapter 2, so we’ll use this dependencies section then.

Now open src/main.rs and take a look:

Filename: src/main.rs

fn main() {
 println!("Hello, world!");
}

Cargo has generated a “Hello, world!” program for you, just like the one we
wrote in Listing 1-1! So far, the differences between our project and the
project Cargo generated are that Cargo placed the code in the src directory
and we have a Cargo.toml configuration file in the top directory.

Cargo expects your source files to live inside the src directory. The
top-level project directory is just for README files, license information,
configuration files, and anything else not related to your code. Using Cargo
helps you organize your projects. There’s a place for everything, and
everything is in its place.

If you started a project that doesn’t use Cargo, as we did with the “Hello,
world!” project, you can convert it to a project that does use Cargo. Move the
project code into the src directory and create an appropriate Cargo.toml
file.

Building and Running a Cargo Project

Now let’s look at what’s different when we build and run the “Hello, world!”
program with Cargo! From your hello_cargo directory, build your project by
entering the following command:

$ cargo build
 Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 2.85 secs

This command creates an executable file in target/debug/hello_cargo (or
target\debug\hello_cargo.exe on Windows) rather than in your current
directory. Because the default build is a debug build, Cargo puts the binary in
a directory named debug. You can run the executable with this command:

$./target/debug/hello_cargo # or .\target\debug\hello_cargo.exe on Windows
Hello, world!

If all goes well, Hello, world! should print to the terminal. Running cargo build for the first time also causes Cargo to create a new file at the top
level: Cargo.lock. This file keeps track of the exact versions of
dependencies in your project. This project doesn’t have dependencies, so the
file is a bit sparse. You won’t ever need to change this file manually; Cargo
manages its contents for you.

We just built a project with cargo build and ran it with
./target/debug/hello_cargo, but we can also use cargo run to compile the
code and then run the resultant executable all in one command:

$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/hello_cargo`
Hello, world!

Using cargo run is more convenient than having to remember to run cargo build and then use the whole path to the binary, so most developers use cargo run.

Notice that this time we didn’t see output indicating that Cargo was compiling
hello_cargo. Cargo figured out that the files hadn’t changed, so it didn’t
rebuild but just ran the binary. If you had modified your source code, Cargo
would have rebuilt the project before running it, and you would have seen this
output:

$ cargo run
 Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.33 secs
 Running `target/debug/hello_cargo`
Hello, world!

Cargo also provides a command called cargo check. This command quickly checks
your code to make sure it compiles but doesn’t produce an executable:

$ cargo check
 Checking hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.32 secs

Why would you not want an executable? Often, cargo check is much faster than
cargo build because it skips the step of producing an executable. If you’re
continually checking your work while writing the code, using cargo check will
speed up the process of letting you know if your project is still compiling! As
such, many Rustaceans run cargo check periodically as they write their
program to make sure it compiles. Then they run cargo build when they’re
ready to use the executable.

Let’s recap what we’ve learned so far about Cargo:

	We can create a project using cargo new.

	We can build a project using cargo build.

	We can build and run a project in one step using cargo run.

	We can build a project without producing a binary to check for errors using
cargo check.

	Instead of saving the result of the build in the same directory as our code,
Cargo stores it in the target/debug directory.

An additional advantage of using Cargo is that the commands are the same no
matter which operating system you’re working on. So, at this point, we’ll no
longer provide specific instructions for Linux and macOS versus Windows.

Building for Release

When your project is finally ready for release, you can use cargo build --release to compile it with optimizations. This command will create an
executable in target/release instead of target/debug. The optimizations
make your Rust code run faster, but turning them on lengthens the time it takes
for your program to compile. This is why there are two different profiles: one
for development, when you want to rebuild quickly and often, and another for
building the final program you’ll give to a user that won’t be rebuilt
repeatedly and that will run as fast as possible. If you’re benchmarking your
cod